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Abstract. We consider the problem of coloring k-colorable graphs with the fewest possible colors. We
present a randomized polynomial time algorithm that colors a 3-colorable graph on n vertices with
min{O(D1/3 log1/2 D log n), O(n1/4 log1/2 n)} colors where D is the maximum degree of any vertex.
Besides giving the best known approximation ratio in terms of n, this marks the first nontrivial
approximation result as a function of the maximum degree D. This result can be generalized to
k-colorable graphs to obtain a coloring using min{O(D122/k log1/2 D log n), O(n123/(k11) log1/2 n)}
colors. Our results are inspired by the recent work of Goemans and Williamson who used an
algorithm for semidefinite optimization problems, which generalize linear programs, to obtain im-
proved approximations for the MAX CUT and MAX 2-SAT problems. An intriguing outcome of our
work is a duality relationship established between the value of the optimum solution to our
semidefinite program and the Lovász q-function. We show lower bounds on the gap between the
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optimum solution of our semidefinite program and the actual chromatic number; by duality this also
demonstrates interesting new facts about the q-function.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; G.2.1 [Discrete Mathematics]: Combinatorics; G.2.2 [Dis-
crete Mathematics]: Graph Theory

General Terms: Algorithms, Optimization, Theory

Additional Key Words and Phrases: Approximation algorithms, chromatic number, graph coloring,
NP-completeness, randomized algorithms

1. Introduction

A legal vertex coloring of a graph G(V, E) is an assignment of colors to its
vertices such that no two adjacent vertices receive the same color. Equivalently, a
legal coloring of G by k colors is a partition of its vertices into k independent
sets. The minimum number of colors needed for such a coloring is called the
chromatic number of G, and is usually denoted by x(G). Determining the
chromatic number of a graph is known to be NP-hard (cf. Garey and Johnson
[1979]).

Besides its theoretical significance as a canonical NP-hard problem, graph
coloring arises naturally in a variety of applications such as register allocation
[Briggs et al. 1989; Chaitin 1982; Chaitin et al. 1981] and timetable/examination
scheduling [Berge 1973; Wood 1969]. In many applications that can be formu-
lated as graph coloring problems, it suffices to find an approximately optimum
graph coloring—a coloring of the graph with a small though non-optimum
number of colors. This along with the apparent impossibility of an exact solution
has led to some interest in the problem of approximate graph coloring. The
analysis of approximation algorithms for graph coloring started with the work of
Johnson [1974], who shows that a version of the greedy algorithm gives an
O(n/log n)-approximation algorithm for k-coloring. Wigderson [1983] improved
this bound by giving an elegant algorithm that uses O(n121/(k21)) colors to
legally color a k-colorable graph. Subsequently, other polynomial time algorithms
were provided by Blum [1994] that use O(n3/8 log8/5 n) colors to legally color an
n-vertex 3-colorable graph. This result generalizes to coloring a k-colorable
graph with O(n121/(k24/3) log8/5 n) colors. The best known performance
guarantee for general graphs is due to Halldórsson [1993] who provided a
polynomial time algorithm using a number of colors that is within a factor of
O(n(log log n)2/log3 n) of the optimum.

Recent results in the hardness of approximations indicate that it may be not
possible to substantially improve the results described above. Lund and Yanna-
kakis [1993] used the results of Arora et al. [1992] and Feige et al. [1996] to show
that there exists a (small) constant e . 0 such that no polynomial time algorithm
can approximate the chromatic number of a graph to within a ratio of ne unless
P 5 NP. The current hardness result for the approximation of the chromatic
number is due to Feige and Kilian [1996] and Håstad [1996], who show that
approximating it to within n12d, for any d . 0, would imply NP 5 RP (RP is the
class of probabilistic polynomial time algorithms making one-sided error). How-
ever, none of these hardness results apply to the special case of the problem
where the input graph is guaranteed to be k-colorable for some small k. The best
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hardness result in this direction is due to Khanna et al. [1992] who show that it is
not possible to color a 3-colorable graph with 4 colors in polynomial time unless
P 5 NP.

In this paper, we present improvements on the result of Blum [1994]. In
particular, we provide a randomized polynomial time algorithm that colors a
3-colorable graph of maximum degree D with min{O(D1/3 log1/2 D log n),
O(n1/4 log1/2 n)} colors; moreover, this can be generalized to k-colorable graphs
to obtain a coloring using O(D122/k log1/2 D log n) or O(n123/(k11) log1/2 n)
colors. Besides giving the best known approximations in terms of n, our results
are the first nontrivial approximations given in terms of D. Our results are based
on the recent work of Goemans and Williamson [1995] who used an algorithm
for semidefinite optimization problems (cf. Grötschel et al. [1981] and Alizadeh
[1995]) to obtain improved approximations for the MAX CUT and MAX 2-SAT
problems. We follow their basic paradigm of using algorithms for semidefinite
programming to obtain an optimum solution to a relaxed version of the problem,
and a randomized strategy for “rounding” this solution to a feasible but
approximate solution to the original problem. Motwani and Naor [1993] have
shown that the approximate graph coloring problem is closely related to the
problem of finding a CUT COVER of the edges of a graph. Our results can be
viewed as generalizing the MAX CUT approximation algorithm of Goemans and
Williamson to the problem of finding an approximate CUT COVER. In fact, our
techniques also lead to improved approximations for the MAX k-CUT problem
[Frieze and Jerrum 1994]. We also establish a duality relationship between the
value of the optimum solution to our semidefinite program and the Lovász
q-function [Grötschel et al. 1981, 1987; Lovász 1979]. We show lower bounds on
the gap between the optimum solution of our semidefinite program and the
actual chromatic number; by duality this also demonstrates interesting new facts
about the q-function.

Alon and Kahale [1994] use related techniques to devise a polynomial time
algorithm for 3-coloring random graphs drawn from a “hard” distribution on the
space of all 3-colorable graphs. Recently, Frieze and Jerrum [1994] have used a
semidefinite programming formulation and randomized rounding strategy essen-
tially the same as ours to obtain improved approximations for the MAX k-CUT
problem with large values of k. Their results required a more sophisticated
version of our analysis, but for the coloring problem our results are tight up to
poly-logarithmic factors and their analysis does not help to improve our bounds.

Semidefinite programming relaxations are an extension of the linear program-
ming relaxation approach to approximately solving NP-complete problems. We
thus present our work in the style of the classical LP-relaxation approach. We
begin in Section 2 by defining a relaxed version of the coloring problem. Since we
use a more complex relaxation than standard linear programming, we must show
that the relaxed problem can be solved; this is done in Section 3. We then show
relationships between the relaxation and the original problem. In Section 4, we
show that (in a sense to be defined later) the value of the relaxation bounds the
value of the original problem. Then, in Sections 5, 6, and 7, we show how a
solution to the relaxation can be “rounded” to make it a solution to the original
problem. Combining the last two arguments shows that we can find a good
approximation. Section 3, Section 4, and Sections 5–7 are in fact independent
and can be read in any order after the definitions in Section 2. In Section 8, we
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investigate the relationship between our fractional relaxations and the Lovász
q-function, showing that they are in fact dual to one another. We investigate the
approximation error inherent in our formulation of the chromatic number via
semi-definite programming in Section 9.

2. A Vector Relaxation of Coloring

In this section, we describe the relaxed coloring problem whose solution is in
turn used to approximate the solution to the coloring problem. Instead of
assigning colors to the vertices of a graph, we consider assigning (n-dimensional)
unit vectors to the vertices. To capture the property of a coloring, we aim for the
vectors of adjacent vertices to be “different” in a natural way. The vector
k-coloring that we define plays the role that a hypothetical “fractional k-coloring”
would play in a classical linear-programming relaxation approach to the problem.
Our relaxation is related to the concept of an orthonormal representation of a
graph [Lovász 1979; Grötschel et al. 1981].

Definition 2.1. Given a graph G 5 (V, E) on n vertices, and a real number
k $ 1, a vector k-coloring of G is an assignment of unit vectors vi from the space
Rn to each vertex i [ V, such that for any two adjacent vertices i and j the dot
product of their vectors satisfies the inequality

^vi, vj& # 2
1

k 2 1
.

The definition of an orthonormal representation [Lovász 1979; Grötschel et al.
1981] requires that the given dot products be equal to zero, a weaker require-
ment than the one above.

3. Solving the Vector Coloring Problem

In this section, we show how the vector coloring relaxation can be solved using
semidefinite programming. The methods in this section closely mimic those of
Goemans and Williamson [1995].

To solve the problem, we need the following auxiliary definition:

Definition 3.1. Given a graph G 5 (V, E) on n vertices, a matrix k-coloring
of the graph is an n 3 n symmetric positive semidefinite matrix M, with mii 5 1
and mij # 21/(k 2 1) if {i, j} [ E.

We now observe that matrix and vector k-colorings are in fact equivalent (cf.
Goemans and Williamson [1995]). Thus, to solve the vector coloring relaxation, it
will suffice to find a matrix k-coloring.

FACT 3.2. A graph has a vector k-coloring if and only if it has matrix k-coloring.
Moreover, a vector (k 1 e)-coloring can be constructed from a matrix k-coloring in
time polynomial in n and log(1/e).

Note that an exact solution cannot be found, as some of the values in it may be
irrational.

PROOF. Given a vector k-coloring {vi}, the matrix k-coloring is defined by
mij 5 ^vi, vj&. For the other direction, it is well known that for every symmetric
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positive definite matrix M there exists a square matrix U such that UUT 5 M
(where UT is the transpose of U). The rows of U are vectors {ui} i51

n that form a
vector k-coloring of G.

An d-close approximation to the matrix U can be found in time polynomial in
n and log(1/d) using the Incomplete Cholesky Decomposition [Goemans and
Williamson 1995; Golub and Van Loan 1983]. (Here by d-close we mean a matrix
U9 such that U9U9T 2 M has L` norm less than d.) This, in turn, gives a vector
(k 1 e)-coloring of the graph, provided d is chosen appropriately. e

LEMMA 3.3. If a graph G has a vector k-coloring, then a vector (k 1 e)-coloring
of the graph can be constructed in time polynomial in k, n, and log(1/e).

PROOF. Our proof is similar to those of Lovász [1979] and Goemans–
Williamson [1995]. We construct a semidefinite optimization problem (SDP)
whose optimum is 21/(k 2 1) when k is the smallest real number such that a
matrix k-coloring of G exists. The optimum solution also provides a matrix
k-coloring of G.

minimize
where
subject to

a

$mij% is positive semidefinite
mij # a if ~i, j! [ E
mij 5 mji

mii 5 1.

Consider a graph that has a vector (and matrix) k-coloring. This means there is
a solution to the above semidefinite program with a 5 21/(k 2 1). The
ellipsoid method or other interior-point-based methods [Grötschel et al. 1981;
Alizadeh 1995] can be employed to find a feasible solution where the value of the
objective is at most 21/(k 2 1) 1 d in time polynomial in n and log 1/d. This
implies that for all {i, j} [ E, mij is at most d 2 1/(k 2 1), which is at most
21/(k 1 e 2 1) for e 5 2d(k 2 1)2, provided d # 1/ 2(k 2 1). Thus, a matrix
(k 1 e)-coloring can be found in time polynomial in k, n and log(1/e). From the
matrix coloring, the vector coloring can be found in polynomial time as was
noted in the previous lemma. e

For the remainder of this paper, we will ignore the e error term in Lemma 3.3
because it can be made so small as to be irrelevant to our analysis.

4. Relating the Original and Relaxed Solutions

In this section, we show that our vector coloring problem is a useful relaxation
because the solution to it is related to the solution of the original problem. In
order to understand the quality of the relaxed solution, we need the following
geometric lemma:

LEMMA 4.1. For all positive integers k and n such that k # n 1 1, there exist k
unit vectors in Rn such that the dot product of any distinct pair is 21/(k 2 1).

PROOF. Clearly, it suffices to prove the lemma for n 5 k 2 1. (For other
values of n, we make the coordinates of the vectors 0 in all but the first k 2 1
coordinates.) We begin by proving the claim for n 5 k. We explicitly provide
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unit vectors v1
(k), . . . , vk

(k) [ Rk21 such that ^vi
(k), vj

(k)& # 21/(k 2 1) for i Þ
j. The vector vi

(k) is (1/k(k 2 1))1/ 2 in all coordinates except the ith coordinate.
In the ith coordinate vi

(k) is ((k 2 1)/k)1/ 2. It is easy to verify that the vectors
are unit length and that their dot products are exactly (21/(k 2 1)).

As given, the vectors are in a k-dimensional space. Note, however, that the dot
product of each vector with the all-1’s vector is 0. This shows that all k of the
vectors are actually in a (k 2 1)-dimensional hyperplane of the k-dimensional
space. This proves the lemma. e

COROLLARY 4.2. Every k-colorable graph G has a vector k-coloring.

PROOF. Bijectively map the k colors to the k vectors defined in the previous
lemma. e

Note that a graph is vector 2-colorable if and only if it is 2-colorable. Lemma
4.1 is tight in that it provides the best possible value for minimizing the maximum
dot-product among k unit vectors. This can be seen from the following lemma:

LEMMA 4.3. Let G be vector k-colorable and let i be a vertex in G. The induced
subgraph on the neighbors of i is vector (k 2 1)-colorable.

PROOF. Let v1, . . . , vn be a vector k-coloring of G and assume without loss
of generality that vi 5 (1, 0, 0, . . . , 0). Associate with each neighbor j of i a
vector v9j obtained by projecting vj onto coordinates 2 through n and then scaling
it up so that v9j has unit length. It suffices to show that for any two adjacent
vertices j and j9 in the neighborhood of i, ^v9j, v9j9& # 21/(k 2 2).

Observe first that the projection of vj onto the first coordinate is negative and
has magnitude at least 1/(k 2 1). This implies that the scaling factor for v9j is at
least (k 2 1)/(k(k 2 2))1/ 2. Thus,

^v9j, v9j9& #
~k 2 1!2

k~k 2 2!
S ^vj, vj9& 2

1

~k 2 1!2D #
21

k 2 2
. e

A simple induction using the above lemma shows that any graph containing a
(k 1 1)-clique is not k-vector colorable. Thus, the “vector chromatic number”
lies between the clique and chromatic number. This also shows that the analysis
of Lemma 4.1 is tight in that 21/(k 2 1) is the minimum possible value of the
maximum of the dot-products of k vectors.

In the next few sections, we prove the harder part, namely, if a graph has a
vector k-coloring then it has an Õ(D122/k) and an Õ(n123/(k11))-coloring.

5. Semicolorings

Given the solution to the relaxed problem, our next step is to show how to
“round” the solution to the relaxed problem in order to get a solution to the
original problem. Both of the rounding techniques we present in the following
sections produce the coloring by working through an almost legal semicoloring of
the graph, as defined below.

Definition 5.1. A k-semicoloring of a graph G is an assignment of k colors to
at least half its vertices such that no two adjacent vertices are assigned the same
color.
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An algorithm for semicoloring leads naturally to a coloring algorithm as shown
by the following lemma. The algorithm uses up at most a logarithmic factor more
colors than the semicoloring algorithm. Furthermore, we do not even lose this
logarithmic factor if the semicoloring algorithm uses a polynomial number of
colors (which is what we will show we use).

LEMMA 5.2. If an algorithm A can ki-semicolor any i-vertex subgraph of graph
G in randomized polynomial time, where ki increases with i, then A can be used to
O(kn log n)-color G. Furthermore, if there exists e . 0 such that for all i, ki 5 V(ie),
then A can be used to color G with O(kn) colors.

PROOF. We show how to construct a coloring algorithm A9 to color any
subgraph H of G. A9 starts by using A to semicolor H. Let S be the subset of
vertices that have not been assigned a color by A. Observe that uS u # uV(H) u/ 2.
A9 fixes the colors of vertices not in S, and then recursively colors the induced
subgraph on S using a new set of colors.

Let ci be the maximum number of colors used by A9 to color any i-vertex
subgraph. Then ci satisfies the recurrence

ci # ci/ 2 1 ki.

It is easy to see that any ci satisfying this recurrence must satisfy ci # ki log i. In
particular this implies that cn # O(kn log n). Furthermore, for the case where ki

5 V(ie), the above recurrence is satisfied only when ci 5 Q(ki). e

Using the above lemma, we devote the next two sections to algorithms for
transforming vector colorings into semicolorings.

6. Rounding via Hyperplane Partitions

We now focus our attention on vector 3-colorable graphs, leaving the extension
to general k for later. Let D be the maximum degree in a graph G. In this
section, we outline a randomized rounding scheme for transforming a vector
3-coloring of G into an O(D log32)-semicoloring, and thus into an O(D log32 log
n)-coloring of G. Combining this method with a technique of Wigderson [1983]
yields an O(n0.386)-coloring of G. The method is based on that of Goemans and
Williamson [1995] and is weaker than the method we describe in the following
section; however, it introduces several of the ideas we will use in the more
powerful algorithm.

Assume we are given a vector 3-coloring {vi} i51
n . Recall that the unit vectors

vi and vj associated with an adjacent pair of vertices i and j have a dot product of
at most 21/2, implying that the angle between the two vectors is at least 2p/3
radians (120 degrees).

Definition 6.1. Consider a hyperplane H. We say that H separates two vectors
if they do not lie on the same side of the hyperplane. For any edge {i, j} [ E,
we say that the hyperplane H cuts the edge if it separates the vectors vi and vj.

In the sequel, we use the term, random hyperplane, to denote the unique
hyperplane containing the origin and having as its normal a random unit vector v
uniformly distributed on the unit sphere Sn. The following lemma is a restate-
ment of Lemma 1.2 of Goemans–Williamson [1995].
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LEMMA 6.2. [GOEMANS–WILLIAMSON 1995]. Given two vectors at an angle of
u, the probability that they are separated by a random hyperplane is exactly u/p.

We conclude that given a vector 3-coloring, for any edge {i, j} [ E, the
probability that a random hyperplane cuts the edge is exactly 2/3. It follows that
the expected fraction of the edges in G that are cut by a random hyperplane is
exactly 2/3. Suppose that we pick r random hyperplanes independently. Then, the
probability that an edge is not cut by one of these hyperplanes is (1/3)r, and the
expected fraction of the edges not cut is also (1/3)r.

We claim that this gives us a good semicoloring algorithm for the graph G.
Notice that r hyperplanes can partition Rn into at most 2 r distinct regions. (For
r # n, this is tight since r hyperplanes create exactly 2r regions.) An edge is cut
by one of these r hyperplanes if and only if the vectors associated with its
end-points lie in distinct regions. Thus, we can associate a distinct color with
each of the 2 r regions and give each vertex the color of the region containing its
vector. The expected number of edges whose end-points have the same color is
(1/3)rm, where m is the number of edges in E.

THEOREM 6.3. If a graph has a vector 3-coloring, then it has an O(Dlog32)-
semicoloring that can be constructed from the vector 3-coloring in polynomial time
with high probability.

PROOF. We use the random hyperplane method just described. Fix r 5 2 1
log3 D, and note that (1/3) r # 1/9D and that 2r 5 O(D log32). As noted above,
r hyperplanes chosen independently at random will cut an edge with probability
1 2 1/9D. Thus, the expected number of edges that are not cut is m/9D #
n/18 , n/8, since the number of edges is at most nD/ 2. By Markov’s inequality
(cf. [Motwani and Naor 1993, p. 46]) the probability that the number of uncut
edges is more than twice the expected value is at most 1/2. Thus, with probability
at least 1/2, we get a coloring with at most n/4 uncut edges. Deleting one
endpoint of each such edge leaves a set of 3n/4 colored vertices with no uncut
edges—that is, a semicoloring.

Repeating the entire process t times means that we will find a O(D log32)-
semicoloring with probability at least 1 2 1/ 2 t. e

Noting that log32 , 0.631 and that D # n, this theorem and Lemma 5.2
implies a semicoloring using O(n0.631) colors.

By varying the number of hyperplanes, we can arrange for a trade-off between
the number of colors used and the number of edges that violate the resulting
coloring. This may be useful in some applications where a nearly legal coloring is
good enough.

6.1. WIGDERSON’S ALGORITHM. Our coloring can be improved using the
following idea due to Wigderson [1983]. Fix a threshold value d. If there exists a
vertex of degree greater than d, pick any one such vertex and 2-color its
neighbors (its neighborhood is vector 2-colorable and hence 2-colorable). The
colored vertices are removed and their colors are not used again. Repeating this
as often as possible (or until half the vertices are colored) brings the maximum
degree below d at the cost of using at most 2n/d colors. At this point, we can
semicolor the remainder with O(d0.631) colors. Thus, we can obtain a semicolor-
ing using O(n/d 1 d0.631) colors. The optimum choice of d is around n0.613,
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which implies a semicoloring using O(n0.387) colors. This semicoloring can be
used to legally color G using O(n0.387) colors by applying Lemma 5.2.

COROLLARY 6.1.1. A 3-colorable graph with n vertices can be colored using
O(n0.387) colors by a polynomial time randomized algorithm.

The bound just described is (marginally) weaker than the guarantee of a
O(n0.375) coloring due to Blum [1994]. We now improve this result by construct-
ing a semicoloring with fewer colors.

7. Rounding via Vector Projections

In this section, we start by proving the following more powerful version of
Theorem 6.3. A simple application of Wigderson’s technique to this algorithm
yields our final coloring algorithm.

THEOREM 7.1. For every integer function k 5 k(n), a vector k-colorable graph
with maximum degree D can be semi-colored with at most O(D122/k=lnD) colors in
probabilistic polynomial time.

As in the previous section, this has immediate consequences for approximate
coloring.

PROOF. Given a vector k-coloring, we show that it is possible to extract an
independent set of size V(n/(D122/k=ln D)). If we assign one color to this set
and recurse on the rest of the vertices, we will end up using O(D122/k=ln D)
colors in all to assign colors to half the vertices and the result follows. To find
such a large independent set, we give a randomized procedure for selecting an
induced subgraph with n9 vertices and m9 edges such that E[n9 2 m9] 5
V(n/(D122/k=ln D)). It follows that with a polynomial number of repeated trials,
we have a high probability of choosing a subgraph with n9 2 m9 5 V(n/(D122/k

=ln D)). Given such a graph, we can delete one endpoint of each edge, leaving
an independent set of size n9 2 m9 5 V(n/(D122/k=ln D)), as desired.

We now give the details of the construction. Suppose we have a vector
k-coloring assigning unit vectors vi to the vertices. We fix a parameter c 5 ck,D
to be specified later. We choose a random n-dimensional vector r according to a
distribution to be specified soon. The subgraph consists of all vertices i with vi z
r $ c. Intuitively, since endpoints of an edge have vectors pointing away from
each other, if the vector associated with a vertex has a large dot product with r,
then the vector corresponding to an adjacent vertex will not have such a large dot
product with r and hence will not be selected. Thus, only a few edges are likely to
be in the induced subgraph on the selected set of vertices.

To complete the specification of this algorithm and to analyze it, we need
some basic facts about some probability distributions in Rn.

7.1. PROBABILITY DISTRIBUTIONS IN Rn. Recall that the standard normal
distribution has the density function f( x) 5 1/(2p)1/ 2 exp(2x2/ 2) with distri-
bution function F( x), mean 0, and variance 1. A random vector r 5 (r1, . . . ,
rn) is said to have the n-dimensional standard normal distribution if the compo-
nents ri are independent random variables, each component having the standard
normal distribution. It is easy to verify that this distribution is spherically
symmetric, in that the direction specified by the vector r is uniformly distributed.
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(Refer to Feller [1969, v. II], Knuth [1971, v. 2], and Rényi [1970] for further
details about the higher dimensional normal distribution.)

Subsequently, the phrase “random d-dimensional vector” will always denote a
vector chosen from the d-dimensional standard normal distribution. A crucial
property of the normal distribution which motivates its use in our algorithm is
the following theorem paraphrased from Rényi [1970] (see also Section III.4 of
Feller [1968, v. II]).

THEOREM 7.1.1. (THEOREM IV.16.3 [RÉNYI 1970]). Let r 5 (r1, . . . , rn) be a
random n-dimensional vector. The projections of r onto two lines ,1 and ,2 are
independent (and normally distributed) if and only if ,1 and ,2 are orthogonal.

Alternatively, we can say that under any rotation of the coordinate axes, the
projections of r along these axes are independent standard normal variables. In
fact, it is known that the only distribution with this strong spherical symmetry
property is the n-dimensional standard normal distribution. The latter fact is
precisely the reason behind this choice of distribution1 in our algorithm. In
particular, we will make use of the following corollary to the preceding theorem.

COROLLARY 7.1.2. Let u be any unit vector in Rn. Let r 5 (r1, . . . , rn) be a
random vector (of i.i.d. standard normal variables). The projection of r along u,
given by dot product ^u, r&, is distributed according to the standard (1-dimensional )
normal distribution.

It turns out that even if r is a random n-dimensional unit vector, the above
corollary still holds in the limit: as n grows, the projections of r on orthogonal
lines approach (scaled) independent normal distributions. Thus using a random
unit vectors for our projection turns out to be equivalent to using random normal
vectors in the limit, but is messier to analyze.

Let N( x) denote the tail of the standard normal distribution. That is,

N~ x! 5 E
x

`

f~ y!d y.

We will need the following well-known bounds on the tail of the standard normal
distribution. (See, for instance, Lemma VII.2 of Feller [1968, v. I].)

LEMMA 7.1.3. For every x . 0,

f~ x!S 1

x
2

1

x3D , N~ x! , f~ x! z
1

x
.

PROOF. The proof is immediate from inspection of the following equations
relating the three quantities in the desired inequality to integrals involving f( x),
and the fact f( x)/x is finite for every x . 0.

1 Readers familiar with physics will see the connection to Maxwell’s law on the distribution of
velocities of molecules in R3. Maxwell started with the assumption that in every Cartesian coordinate
system in R3, the three components of the velocity vector are mutually independent and had
expectation zero. Applying this assumption to rotations of the axes, we conclude that the velocity
components must be independent normal variables with identical variance. This immediately implies
Maxwell’s distribution on the velocities.
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f~ x!S 1

x
2

1

x3D 5 E
x

`

f~ y!S 1 2
3

y4D d y,

N~ x! 5 E
x

`

f~ y!d y,

f~ x! z
1

x
5 E

x

`

f~ y!S 1 1
1

y2D d y. e

7.2. THE ANALYSIS. We are now ready to complete the specification of the
coloring algorithm. Recall that our goal is to repeatedly strip away large
independent sets from the graph. We actually set an easier intermediate goal:
find an induced subgraph with a large number n9 of vertices and a number m9
,, n9 of edges. Given such a graph, we can delete one endpoint of each edge to
leave an independent set on n9 2 m9 vertices that can be colored and removed.

As discussed above, to find this sparse graph, we choose a random vector r and
take all vertices whose dot product with r exceeds a certain value c. Let the
induced subgraph on these vertices have n9 vertices and m9 edges. We show that
for sufficiently large c, n9 .. m9 and we get an independent set of size roughly
n9. Intuitively, this is true for the following reason. Any particular vertex has
some particular probability p 5 p(c) of being near r and thus being “captured”
into our set. However, if two vertices are adjacent, the probability that they both
land near r is quite small because the vector coloring has placed them far apart.

For example, in the case of 3-coloring, when the probability that a vertex is
captured is p, the probability that both endpoints of an edge are captured is roughly
p4 (this is counter the intuition that the probability should go as p2, and follows from
the fact that we force adjacent vertices to be far apart—see below). It follows that we
end up capturing (in expectation) a set of pn vertices that contains (in expectation)
only p4m , p4Dn edges in a degree-D graph. In such a set, at least pn 2 p4Dn of the
vertices have no incident edges, and thus form an independent set. We would like
this independent set to be large. Clearly, we need to make p small enough to ensure
p4Dn ,, pn, meaning p ,, D21/3. Taking p much smaller only decreases the size of
the independent set, so it turns out that our best choice is to take p ' D21/3/2,
yielding an independent set of size V(nD21/3). Repeating this capture process many
times therefore achieves an Õ(D1/3) coloring.

We now formalize the intuitive argument. The vector r will be a random
n-dimensional vector. We precisely compute the expectation of n9, the number of
vertices captured, and the expectation of m9, the number of edges in the induced
graph of the captured vertices. We first show that when r is a random normal vector
and our projection threshold is c, the expectation of n9 2 m9 exceeds n(N(c) 2
DN(ac)) for a certain constant a depending on the vector chromatic number. We
also show that N(ac) grows roughly as N(c)a2

. (For the case of 3-coloring we have
a 5 2, and thus if N(c) 5 p, then N(ac) ' p4.) By picking a sufficiently large c, we
can find an independent set of size V(N(c)). (In the following lemma, n9 and m9 are
functions of c: we do not make this dependence explicit.)

LEMMA 7.2.1. Let a 5 (2(k 2 1)/(k 2 2))1/2. Then for any c,
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E@n9 2 m9# . nSN~c! 2 D
N~ac!

2 D .

PROOF. We first bound E[n9] from below. Consider a particular vertex i with
assigned vector vi. The probability that it is in the selected set is just P[vi z r $ c]. By
Corollary 7.1.2, vi z r is normally distributed and thus this probability is N(c). By
linearity of expectations, the expected number of selected vertices E[n9] 5 nN(c).

Now we bound E[m9] from above. Consider an edge with endpoint vectors v1
and v2. The probability that this edge is in the induced subgraph is the
probability that both endpoints are selected, which is

P@v1 z r $ c and v2 z r $ c# # P@~v1 1 v2! z r $ 2c#

5 PF v1 1 v2

iv1 1 v2i
z r $

2c

iv1 1 v2iG
5 NS 2c

iv1 1 v2iD ,

where the expression follows from Corollary 7.1.2 applied to the preceding
probability expression. We now observe that

iv1 1 v2i 5 Îv1
2 1 v2

2 1 2v1 z v2

# Î2 2 2/~k 2 1!

5 Î2~k 2 2!/~k 2 1!

5 2/a.

It follows that the probability that both endpoints of an edge are selected is at
most N(2ac) # N(ac). If the graph has maximum degree D, then the total
number of edges is at most nD/ 2. Thus the expected number of selected edges,
E[m9], is at most nDN(ac)/ 2.

Combining the previous arguments, we deduce that

E@n9 2 m9# $ nN~c! 2 nD
N~ac!

2
. e

We now determine the a c such that DN(ac) , N(c). This will give us an
expectation of at least N(c)/ 2 in the above lemma. Using the bounds on N( x) in
Lemma 7.1.3, we find that

N~c!

N~ac!
$

~~1/c! 2 ~1/c3!!exp~2c2/ 2!

exp~2a2c2/ 2!/ac

5 aS 1 2
1

c2D exp~~a2 2 1!c2/ 2!

$ Î2S 1 2
1

c2D exp~~a2 2 1!c2/ 2!

257Approximate Graph Coloring by Semidefinite Programming



(The last equation holds since a 5 (2(k 2 1)/(k 2 2))1/ 2 . =2.) Thus, if we
choose c so that 1 2 1/c2 $ 1/=2 and exp(a2 2 1)c2/ 2 $ D, then we get
DN(ac) , N(c). Both conditions are satisfied, for sufficiently large D, if we set

c 5 Î2
~k 2 2!

k
ln D .

(For smaller values of D, we can use the greedy D 1 1-coloring algorithm to get
a color from the graph with a bounded number of colors, where the bound is
independent of n.)

For this choice of c, we find that the independent set that is found has size at
least

E@n9 2 m9# $
nN~c!

2

$ VSn exp~2c2/ 2!S 1

c
2

1

c3D D
$ VS n

D12(2/k) Îln D
D

as desired. This concludes the proof of Lemma 7.1.

7.3. ADDING WIGDERSON’S TECHNIQUE. To conclude, we now determine
absolute approximation ratios independent of D. This involves another applica-
tion of Wigderson’s technique. If the graph has any vertex of large degree, then
we use the fact that its neighborhood is large and is vector (k 2 1)-chromatic, to
find a large independent set in its neighborhood. If no such vertex exists, then
the graph has small maximum degree, so we can use Lemma 7.1 to find a large
independent set in the graph. After extracting such an independent set, we
recurse on the rest of the graph. The following lemma describes the details, and
the correct choice of the threshold degree.

LEMMA 7.3.1. For every integer function k 5 k(n), any vector k-colorable graph
on n vertices can be semicolored with O(n123/(k11) log1/2 n) colors by a probabilistic
polynomial time algorithm.

PROOF. Given a vector k-colorable graph G, we show how to find an
independent set of size V(n3/(k11)/log1/2 n) in the graph. Assume, by induction
on k, that there exists a constant c . 0 such that we can find an independent set
of size ci3/(k911)/(log1/2 i) in any k9-vector chromatic graph on i nodes, for k9 ,
k. We now prove the inductive assertion for k.

Let Dk 5 Dk(n) 5 nk/(k11). If G has a vertex of degree greater than Dk(n),
then we find a large independent set in the neighborhood of G. By Lemma 4.3,
the neighborhood is vector (k 2 1)-colorable. Hence, we can find in this
neighborhood, an independent set of size at least c(Dk)3/k/(log1/2 Dk) $
cn3/(k11)/(log1/2 n). If G does not have a vertex of degree greater than Dk(n),
then by Lemma 7.1, we can find an independent set of size at least
cn/(Dk)122/k/log1/2 Dk $cn3/(k11)/log1/2 n in G. This completes the induction.

By now assigning a new color to each such independent set, we find that we can
color at least n/2 vertices, using up at most O(n123/(k11) log1/2 n) colors. e
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The semicolorings guaranteed by Lemmas 7.1 and 7.3.1 can be converted into
colorings using Lemma 5.1, yielding the following theorem:

THEOREM 7.3.2. Any vector k-colorable graph on n nodes with maximum degree
D can be colored, in probabilistic polynomial time, using min{O(D122/k=ln D log
n), O(n123/(k11)=ln n)} colors.

8. Duality Theory

The most intensively studied relaxation of a semidefinite programming formulation
to date is the Lovász q-function [Grötschel et al. 1981, 1987; Lovász 1979]. This
relaxation of the clique number of a graph led to the first polynomial-time algorithm
for finding the clique and chromatic numbers of perfect graphs. We now investigate
a connection between q and a close variant of the vector chromatic number.

Intuitively, the clique and coloring problems have a certain “duality” since
large cliques prevent a graph from being colored with few colors. Indeed, it is the
equality of the clique and chromatic numbers in perfect graphs that lets us
compute both in polynomial time. We proceed to formalize this intuition. The
duality theory of linear programming has an extension to semidefinite program-
ming. With the help of Eva Tardos and David Williamson, we have shown that in
fact the q-function and a close variant of the vector chromatic number are
semidefinite programming duals to one another and are therefore equal.

We first define the variant.

Definition 8.1. Given a graph G 5 (V, E) on n vertices, a strict vector
k-coloring of G is an assignment of unit vectors ui from the space Rn to each
vertex i [ V, such that for any two adjacent vertices i and j the dot product of
their vectors satisfies the equality

^ui, uj& 5 2
1

k 2 1
.

As usual we say that a graph is strictly vector k-colorable if it has a strict vector
k-coloring. The strict vector chromatic number of a graph is the smallest real number k
for which it has a strict vector k-coloring. It follows from the definition that the strict
vector chromatic number of any graph is lower bounded by the vector chromatic
number.

THEOREM 8.2. The strict vector chromatic number of G is equal to q(G# ).

PROOF. The dual of our strict vector coloring semidefinite program is as
follows (cf. [Alizadeh 1995]):

maximize
where
subject to

2O pii

$ pij% is positive semidefinite

O
iÞj

p ij $ 1

pij 5 pji

pij 5 0 for ~i, j! [y E and i Þ j
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By duality, the value of this semidefinite program is 21/(k 2 1) where k is the
strict vector chromatic number. Our goal is to prove k 5 q. As before, the fact
that { pij} is positive semidefinite means we can find vectors vi such that pij 5
^vi, vj&. The last constraint says that the vectors v form an orthogonal labeling
[Grötschel et al. 1987], that is, that ^vi, vj& 5 0 for (i, j) [y E. We now claim
that the above optimization problem can be reformulated as follows:

maximize
2O ^vi, vi&

O iÞj ^vi, vj&

over all orthogonal labelings {vi}. To see this, consider an orthogonal labeling
and define m 5 ¥ iÞj ^vi, vj&. Note this is the value of the first constraint in the
first formulation of the dual (that is, the constraint is m # 1) and of the
denominator in the second formulation. Then, in an optimum solution to the first
formulation, we must have m 5 1, since otherwise we can divide each vi by =m
and get a feasible solution with a larger objective value. Thus, the optimum of
the second formulation is at least as large as that of the first. Similarly, given any
optimum {vi} for the second formulation, vi/=m forms a feasible solution to the
first formulation with the same value. Thus, the optima are equal. We now
manipulate the second formulation.

max
2O ^vi, vi&

O iÞj ^vi, vj&
5 max

2O ^vi, vi&

O i , j ^vi, vj&2O ^vi, vi&

5 Smin
O i , j ^vi, vj& 2 O ^vi, vi&

2O ^vi, vi&
D 21

5 Smin 2
O i, j ^vi, vj&

O ^vi, vi&
1 1D 21

5 2Smax
O i, j ^vi, vj&

O ^vi, vi&
2 1D 21

.

It follows from the last equation that the strict vector chromatic number is

max
O i, j ^vi, vj&

O ^vi, vi&
.

However, by the same argument as was used to reformulate the dual, this is equal
to the problem of maximizing ¥ i, j ^vi, vj& over all orthogonal labelings such that
¥ ^vi, vj& # 1. This is simply Lovász’s q3 formulation of the q-function
[Grötschel et al. 1987, page 287].

9. The Gap between Vector Colorings and Chromatic Numbers

The performance of our randomized rounding approach seems far from opti-
mum. In this section we ask why, and show that the problem is not in the
randomized rounding but in the gap between the original problem and its
relaxation. We investigate the following question: given a vector k-colorable
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graph G, how large can its chromatic number be in terms of k and n? We will show
that a graph with chromatic number nV(1) can have a bounded vector chromatic
number. This implies that our technique is tight in that it is not possible to guarantee
a coloring with no(1) colors on all vector 3-colorable graphs.

Definition 9.1. The Kneser graph K(m, r, t) is defined as follows: the vertices
are all possible r-sets from a universe of size m; and, the vertices vi and vj are
adjacent if and only if the corresponding r-sets satisfy uSi ù Sju , t.

We will need following theorem of Milner [1968] regarding intersecting
hypergraphs. Recall that a collection of sets is called an antichain if no set in the
collection contains another.

THEOREM 9.2. [MILNER 1968]. Let S1, . . . , Sa be an antichain of sets from a
universe of size m such that, for all i and j,

uSi ù Sju $ t.

Then, it must be the case that

a # 1
m

m 1 t 1 1

2
2 .

Notice that using all q-sets, for q 5 (m 1 t 1 1)/ 2, gives a tight example for
this theorem.

The following theorem establishes that the Kneser graphs have a large gap
between their vector chromatic number and chromatic numbers.

THEOREM 9.3. Let n 5 (r
m) denote the number of vertices of the graph K(m, r,

t). For r 5 m/2 and t 5 m/8, the graph K(m, r, t) is vector 3-colorable but has a
chromatic number at least n0.0113.

PROOF. We prove a lower bound on the Kneser graph’s chromatic number x
by establishing an upper bound on its independence number a. It is easy to verify
that the a in Milner’s theorem is exactly the independence number of the Kneser
graph. To bound x, observe that

x $
n

a

$
~m

r !

~ m
~m 1 t!/ 2!

5
~ m

m/ 2!

~ m
9m/16!

<
2m~1 2 o~1!!

2(12o(1))m((9/16)lg~16/9! 1 ~7/16!lg~16/7!)

$ 20.0113m for large enough m.
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In the above sequence, the fourth line uses the approximation

S m
bmD <

2m(2b lg b 2 ~1 2 b!lg~1 2 b!)

~cbm!1/ 2
,

for every b [ (0, 1), where cb is a constant depending only on b. Using the
inequality

n 5 Sm
r D # 2m,

we obtain m $ lg n and thus

x $ ~1.007864! lg n 5 n lg 1.007864 < n0.0113.

Finally, it remains to show that the vector chromatic number of this graph is 3.
This follows by associating with each vertex vi an m-dimensional vector obtained
from the characteristic vector of the set Si. In the characteristic vector, 11
represents an element present in Si and 21 represents elements absent from Si.
The vector associated with a vertex is the characteristic vector of Si scaled down
by a factor of =m to obtain a unit vector. Given vectors corresponding to sets Si

and Sj, the dot product gets a contribution of 21/m for coordinates in SiDSj and
11/m for the others. (Here ADB represents the symmetric difference of the two
sets, that is, the set of elements that occur in exactly one of A or B.) Thus, the
dot product of two adjacent vertices, or sets with intersection at most t, is given
by

1 2
2 uSiDSju

m
5 1 2

2~ uSiu 1 uSju 2 2 uSi ù Sju!

m
# 1 2

4r 2 4t

m
5 2

1

2
.

This implies that the vector chromatic number is 3. e

More refined calculations can be used to improve this bound somewhat.

THEOREM 9.4. There exists a Kneser graph K(m, r, t), that is 3-vector colorable
but has chromatic number exceeding n0.016101, where n 5 (r

m) denotes the number of
vertices in the graph. Further, for large k, there exists a Kneser graph K(m, r, t) that
is k-vector colorable but has chromatic number exceeding n0.0717845.

PROOF. The basic idea is to improve the bound on the vector chromatic
number of the Kneser graph using an appropriately weighted version of the
characteristic vectors. We use weights a and 21 to represent presence and
absence, respectively, of an element in the set corresponding to a vertex in the
Kneser graph, with appropriate scaling to obtain a unit vector. The value of a
that minimizes the vector chromatic number can be found by differentiation and
is

A 5 21 1
mr

r2 2 rt
2

mt

r2 2 rt
.

Setting a 5 A proves that the vector chromatic number is at most
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m~r 2 t!

r2 2 mt
.

At the same time, using Milner’s Theorem proves that the exponent of the
chromatic number is at least

1 2
~m 2 t!log~2m/~m 2 t!! 1 ~m 1 t!log~2m/~m 1 t!!

2~~m 2 r!log~m/~m 2 r!! 1 r log~m/r!!
.

By plotting these functions, we have shown that there is a set of values with
vector chromatic number 3 and chromatic number at least n0.016101. For large
constant vector chromatic numbers, the limiting value of the exponent of the
chromatic number is roughly 0.0717845. e

10. Conclusions

The Lovász number of a graph has been a subject of active study due to the close
connections between this parameter and the clique and chromatic numbers. In
particular, the following “sandwich theorem” was proved by Lovász [1979] (see
Knuth [1994] for a survey).

v~G! # q~G# ! # x~G! . (1)

This led to the hope that the following question may have an affirmative
answer. Does there exist e, e9 . 0 such that, for any graph G on n vertices

q~G# !

n12e
# v~G! # q~G# ! # x~G! # q~G# ! 3 n12e9? (2)

Our work in this paper proves a weak but nontrivial upper bound on the
chromatic number of G in terms of q(G# ). However, this is far from achieving
the bound conjectured above and subsequent to our work, two results have
ended up answering this question negatively. Feige [1995] has shown that for
every e . 0, there exist families of graphs for which x(G) . q(G# )n12e.
Interestingly, the families of graphs exhibited in Feige’s work use the construc-
tion of Section 9 as a starting point. Even more conclusively, the results of
Håstad [1996] and Feige and Kilian [1996] have shown that no polynomial time
computable function approximates the clique number or chromatic number to
within factors of n12e, unless NP 5 RP. Thus no simple modification of the q
function is likely to provide a much better approximation guarantee.

In related results, Alon and Kahale [1998] have also been able to use the
semidefinite programming technique in conjunction with our techniques to
obtain algorithms for computing bounds on the clique number of a graph with
linear-sized cliques, improving upon some results due to Boppana and Halldors-
son [1992]. Independent of our results, M. Szegedy (personal communication)
has also shown that a similar construction yields graphs with vector chromatic
number at most 3 that are not colorable using n0.05 colors. Notice that the
exponent obtained from his result is better than the one in Section 9. N. Alon
(personal communication) has obtained a slight improvement over Szegedy’s
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bound by using an interesting variant of the Kneser graph construction. Finally,
the main algorithm presented here has been derandomized in a recent work of
Mahajan and Ramesh [1995]. By combining our techniques with those of Blum
[1994], Blum and Karger [1997] have given a 3-coloring algorithm with perfor-
mance ratio Õ(n3/14).
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